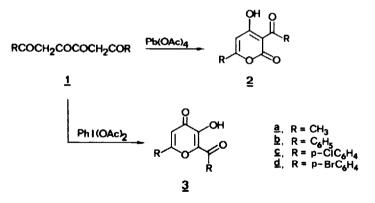
THE SYNTHESIS OF REGIOISOMERS OF DEHYDROACETIC ACIDS


M. Poje

Department of Organic Chemistry and Biochemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, 41000 Zagreb, Yugoslavia

Summary — The method for the synthesis of new 2-acyl-6-alkyl(aryl)-3-hydroxy-4H-pyran-4-ones (3), is described, involving the oxidation of 1,3,4,6-tetra-ketones 1 with iodosobenzene diacetate.

The regiospecific dimerization of diketene to dehydroacetic acid (<u>2a</u>) was observed soon after the first announcement of the discovery of diketene¹. In spite of the interest in the biogenetic-type syntheses of polyketides², it has not been possible so far to prepare the regioisomer <u>3a</u>. The oxidative cyclization of oxalyldiacetone (<u>1a</u>) promised access to <u>3a</u>, however, the reaction with lead tetra-acetate proceeded with rearrangement to give only dehydroacetic acid (<u>2a</u>)^{3,4}.

A convenient solution to the problem was found when conducting the oxidation of tetraketones $\underline{1}$ with iodosobenzene diacetate, opening the way to the first synthesis of regioisomers $\underline{3}$ of dehydroacetic acids.

To a stirred suspension of tetraketone⁵ (<u>1</u>, 0.05 mol) in acetic acid (50 ml), iodosobenzene diacetate⁶ (0.1 mol) was gradually added and stirring was continued for 10-15 h (iodimetric test). After removal of the solvent the product was crystallized from ethanol. The structure was assigned on the basis of chemical and spectroscopical evidence, and results for individual compounds <u>3a-d</u> are summarized in the Table. The straightforward structural assignment to the regioisomer <u>3a</u> of dehydroacetic acid can be made from its ¹H NMR spectrum in deuteriochloroform: a broad signal at δ 9.78 (exchangeable with D₂O), the allylic AX₃ pattern (⁴J 0.7) at δ 6.31 (q,=CH-) and 2.41 (d,CH₃), and a three-proton singlet at δ 2.60 (CH₃), were consistent with the 2-acetyl-3-hydroxy-6-methyl-4H-pyran-4-one structure.

1576	

<u>3</u> ^a	\texttt{Yield}^b	m.p. ^C	$\lambda max (nm)^d$	v <i>max</i> (KBr), cm ⁻¹	M ⁺ (m/e) ^e	δH(5) ^f
a	83%	147 ⁰	235,300	3225,1680,1632,1618	168	6.31q
$\overline{\mathtt{b}}^g$	33%	177 ⁰	265,300,315	3200,1677,1626,1620	292	6.99s
c	61%	219 ⁰	272,310-320	3100,1660,1637,1620	360,362	6.07s
<u>d</u>	478	199 ⁰	274,310-320	3090,1661,1638,1622	448,450,452	6.98s

Table. 2-Acyl-6-alkyl(aryl)-3-hydroxy-4H-pyran-4-ones

a) Satisfactory analytical data (±0.4% for C,H,Br,Cl,and N) were obtained for all new compounds and their derivatives. b) Yields are based on recrystallized products (EtOH). c) M.ps. are uncorrected. d) Methanolic solution. e) Spectra of 3 displayed intense peaks due to M-CO, M-COR, RC₃H₂O₂, RCO, and R. An equivalent of diketene (RCOCH=C=O) was produced under electron impact by the retro-Diels-Alder reaction. f) CDCl₃. g) An unstable isomeric compound, $C_{18}H_{12}O_4$, m.p. 165°, was also obtained in a 30% yield. Its structure is under investigation. Derivatives of 3b: boron trifluoride-catalysed reaction of 3b with ethereal diazomethane afforded the corresponding 3-methoxy derivative, m.p. 144°(MeOH), MS,m/e 306(M⁺); vmax (KBr) 1676,1638,1623/cm; λ max (MeOH) 265,290 nm; ¹H NMR (CDCl₃), δ 8.0-7.4 (m,10H), 6.93(s,1H), 3.92(s,3H). Bromination of 3b in chloroform gave pale yellow needles of 5-bromo derivative in a 40% yield, m.p. 155°(EtOH), MS, m/e 370,372(M⁺); vmax (KBr) 1651,1647,1566/cm; ¹H NMR (CDCl₃), δ 10.8(br,1H), 8.1-7.4(m,10H). Mono-2, 4-dinitrophenylhydrazone of <u>3b</u>, red needles, m.p. 248-50°.

Although iodosobenzene diacetate and lead tetra-acetate are reagents with similar properties, tetraketones <u>1</u> were oxidized in a different manner. The question of which is the controlling factor of the two possible reaction paths remains unexplained. A possible explanation might be found in the analogy with the oxidative rearrangements of aurones⁷. It seems probable that oxidations of <u>1</u> may involve the same type of hydroxyfuranone intermediate^{4,8}, from which by migration of suitable bonds the products <u>2</u> or <u>3</u> may be derived. Studies directed toward the identification of such intermediates are currently in progress⁹.

REFERENCES AND NOTES

- N. T. M. Wilsmore and F. Chick, J. Chem. Soc. <u>93-4</u>, 946 (1908); A. B. Boese, A. B. Steele, and M. F. Dull, J. Org. Chem. <u>14</u>, 460 (1949).
- 2. T. Money, Chem. Rev. 70, 553 (1970); Th. M. Harris, C. M. Harris, and K. B. Hindley, Fortschr. Chem. org. Naturstoffe <u>31</u>, 217 (1974).
- 3. K. Balenović, Experientia 2,1 (1946); Rec. Trav. Chim. Pays-Bas 67, 282 (1948).
- 4. M. Poje, B. Gašpert, and K. Balenović, Rec. Trav. Chim. Pays-Bas 97, 242 (1978).
- 5. L. Claisen and N. Stylos, Ber. <u>21</u>, 1141 (1888); P. F. Schmidt, Ber. <u>28</u>, 1206(1895); D. Keglević, M. Malnar, and T. Tomljenović, Arhiv Kem. 26, 67 (1954).
- 6. K. H. Pausacker, J. Chem. Soc. 107 (1953); J. G. Sharefkin and H. Saltzman, Org. Syntheses Coll. Vol. 5, 660 (1973).
- 7. G. M. Badger and J. W. Clark-Lewis in "Molecular Rearrangements", Part I, P. de Mayo, Ed., Interscience, New-York, 1963, p. 637; M. Geoghan, W. T. O'Sullivan, and E. Philbin, Tetrahedron <u>22</u>, 3203 (1966).
- The existence of hydroxyfuranone tautomeric forms of 1 has recently been established: M. Poje and K. Balenović, J. Heterocyclic Chem. <u>16</u>, 417 (1979).
- 9. This research was assisted financially by the Croatian Republic Research Fund.

(Received in UK 11 February 1980)